
Open Core Headless Document Management in AWS

A FormKiQ Whitepaper

July 20, 2022

SCALABILITY IN DOCUMENT
MANAGEMENT SYSTEMS:
COMPARING SERVER-BASED AND
SERVERLESS ARCHITECTURES



A FormKiQ Whitepaper - July 20, 2022

SCALABILITY IN DOCUMENT MANAGEMENT SYSTEMS: COMPARING SERVER-BASED AND SERVERLESS ARCHITECTURES

page 02 of 07

As digitization and process improvement
continues, boosted by globalization, remote
work, and the reduction of paper-based and
manual processes in general, the reliance on
document management systems increases in
step. As cloud-based applications and
storage also increase, there is an opportunity
to leverage cloud-native services to create
working document management systems
(DMS) that can keep pace with the growth of
any organization.

What is scalability and why is it essential?

Scalability is the ability for a software solution
to maintain functionality no matter the size of
your data or the amount of processing
required. This is not only important for large
data sets and complex processes; it's
essential that smaller data sets and simpler
processes are handled by the solution
efficiently. In other words, a small business
and a large business should both be able to
make effective use of the solution, with no
minimum level of size or complexity required
for a scalable solution to be economical.

How is scalability achieved?

There are two main methods to achieve
scalability: 
 

Increase the capacity of the system,
often through replicating the system,
i.e., adding new database instances
and/or processing instances

Optimize the performance of the
system, allowing more input, output,
and processing within the same system
capacity

While optimization is an important part of all
software development, the most effective
way to achieve scalability consistently is by
increasing capacity, and that is often
achieved by removing any barriers that
prevent or restrict that capacity increase. This
is commonly done through cloud-based
software, avoiding two major logistical
barriers, the need for employing a hardware
infrastructure team and the need to source
compute and networking hardware for
capacity increases.

In addition, greater efficiency in scaling
capacity can be found by utilizing serverless
computing in your solution design.

What is serverless computing?

Serverless computing is a cloud-native architecture
that allows developers to build and run applications
without having to manage servers.

For document management systems,
scalability matters for multiple reasons:

unlimited capacity is available for document
storage

system performance, i.e., the organization and
retrieval of documents, does not degrade with the
growth in the number of documents that is
expected over time

creating a replica of the live application for
development or testing can be done at low cost

the system can not only scale up with growth but
can also scale down if the organization contracts



A FormKiQ Whitepaper - July 20, 2022

SCALABILITY IN DOCUMENT MANAGEMENT SYSTEMS: COMPARING SERVER-BASED AND SERVERLESS ARCHITECTURES

page 03 of 07

The term "serverless computing" can be
considered imprecise, as the software does
still run on servers; the term relates to the
fact that the servers are abstracted from the
software, and that any configuration and
maintenance, and even the number and
types of servers, are managed by the cloud
provider to meet real-time demand. This
abstraction not only simplifies the
infrastructure management required for the
functioning of the software, but also provides
a real-time cost model for computer
processing, where the customer is only
charged for the amount of time the code is
being executed.

How does serverless compare to server-based?

In a traditional server-based architecture, the
software provider configures and maintains a
specific number of always-on servers
according to predetermined specifications. If
demand increases, either more servers are
required to be added to the pool of available
servers, or the servers themselves need to be
upgraded by the addition of more memory,
additional CPUs, an increase of storage
space, or a combination of all three. If
demand wanes, whether through long-term
contraction or just due to an overnight,
weekend, or holiday period, the servers
would need to be reduced in number or
specifically downgraded in order to prevent
wasting computing power.

While it's possible to use automation to scale
servers, and while cloud providers can allow
autoscaling by providing additional servers
on demand, there are limitations to the
minimum and maximum size of servers, and
it's ultimately the customer's responsibility to
ensure that they have mechanisms in place
to scale up and down as needed.

In addition, traditional server-based
architecture often requires routine tasks,
such as managing the operating system and
file system, keeping up with security patches,
and setting up and maintaining logging and
monitoring. Cloud providers can abstract
some of these tasks, such as Amazon EC2
providing logging through CloudWatch or file
handling using Elastic File Storage, but some
tasks will always be the responsibility of the
customer.

How serverless is being used

Many software solutions combine server-
based and serverless components; AWS
customers often make use of S3 to store
files, AWS Lambda functions to run tasks,
DynamoDB for a NoSQL database, and
CloudFront as a content delivery network. All
of these components are part of AWS'
serverless offerings, where they fulfill
workflows without any requirement to
maintain and configure servers or to set up
scaling automation, i.e., autoscaling.

It's common to see static websites or
JavaScript-based client applications that are
stored in S3 and served by CloudFront; in
many cases, these sites or applications may
have some limited back-end functionality
handled by AWS Lambda and API Gateway,
for instance when handling a contact form.

For document management systems,
expanding the scope and responsibilities of
serverless components allows for better
scalability, by reducing the components that
require server configuration and scaling
mechanisms. While some functionality may
not be possible with serverless components,
such as providing full text search using
Amazon OpenSearch, using serverless



A FormKiQ Whitepaper - July 20, 2022

SCALABILITY IN DOCUMENT MANAGEMENT SYSTEMS: COMPARING SERVER-BASED AND SERVERLESS ARCHITECTURES

page 04 of 07

whenever possible allows the restrictions on
scaling to be reduced significantly.

How does serverless affect cost?

Serverless is not free, though in the case of
smaller workloads, serverless can often be
run almost entirely within the free tier
provided by the major cloud providers. For
some workflows, on-demand serverless can
be more expensive than a stable server-
based workflow, particularly when no cost
optimizations have been performed. In the
case of AWS, there are upfront cost
commitments that can be made for
processing workflows, such as DynamoDB
Provisioned Capacity and Compute Savings
Plans. There are also optimizations available
for storage, specifically storage tiers (and
intelligent tiering, when available) for
products such as S3 and DynamoDB.

Where serverless excels is in the dynamic
scaling, which is exactly how it achieves its
scalability. In the case of storage, this
scalability means that your S3 or DynamoDB
storage will never run out of space, but at the
cost of your cost growing as your storage
increases. In the case of compute workflows
such as AWS Fargate or AWS Lambda, it's
possible to run hundreds or even thousands
of tasks concurrently. As Fargate tasks can
use 4 virtual CPUs and up to 30GB of
memory each, this level of compute
concurrency should be able to meet upwards
of 99.999% of workloads.

Where server-based excels is when your
workloads use the majority of your server-
based capacity. As this theoretical study from
AWS indicates when comparing EC2 to
Fargate for AWS ECS —

https://aws.amazon.com/blogs/containers/theo
retical-cost-optimization-by-amazon-ecs-launch-
type-fargate-vs-ec2/ — if your workload is able to
remain at near-full utilization of your provisioned EC2
servers, you will see some savings over serverless
Fargate; in the case of this paper, they estimated the
savings on an ECS cluster of fully-utilized EC2s as 20%
over the same cluster using AWS Fargate. But in cases
where the ECS cluster has little to no utilization, Fargate
can be up to 87% cheaper than EC2.

Flexibility: considering serverless despite a
higher usage cost

The key component of systems that would
benefit from a serverless model is a
requirement for flexibility in usage. Some
workloads are consistent enough that it can
be more cost-effective to provision server-
based infrastructure; for example, if a web
application has a consistent level of traffic,
with little to no variance, the per-request cost
of a server-based architecture will likely be
lower than a serverless architecture.

https://aws.amazon.com/blogs/containers/theoretical-cost-optimization-by-amazon-ecs-launch-type-fargate-vs-ec2/


A FormKiQ Whitepaper - July 20, 2022

SCALABILITY IN DOCUMENT MANAGEMENT SYSTEMS: COMPARING SERVER-BASED AND SERVERLESS ARCHITECTURES

page 05 of 07

Looking at serverless for specific document
management system tasks

While there are benefits and drawbacks to
serverless depending on the system being
designed, there are specific tasks within the
document management system workflows
that can leverage serverless components or
managed services for a lower total cost of
ownership over a server-based architecture.

Authentication and authorization

As document management systems often
include documents of varying confidentiality
and differing ownership, it’s essential for a
document management system to include
authentication and authorization
functionality.

In a server-based architecture, authentication
often utilizes a database instance as well as 

the compute instance; in cases of federated
logins, the database instance can be replaced by
a reliance on an existing identity provider such as
Microsoft Active Directory or Google Workspace.

By leveraging a managed authentication service
like Amazon Cognito, a document management
system can use the built-in authentication or a
federated authentication, with no requirement to
store user information within a specific database
instance.

For authorization, a server-based architecture
often implements a module within the application
code. This adds some processing overhead to the
application and the server instances that host it. A
serverless API management service, like Amazon
API Gateway, can be used to offload most of the
authorization processing, whether through
combining that service with a managed
authentication service like Cognito, or by relying
on internal cloud-based identity and access
management such as AWS IAM.

Document storage

In a server-based architecture, the storage of
documents can be handled through the use of a
file server, or even by storing on a single
application server, but scaling in either of these
models can be challenging.

Using a managed object storage service like
Amazon S3 removes any scaling challenges, and
most include storage tiers for better cost
efficiency for long-term infrequent-access storage.

Amazon S3 is known to be more reliable than a
local file server, due to its high fault tolerance,
reliability, and availability. Because S3 has no
minimum storage requirements and offers
intelligent tiering, the cost will generally be lower
than the overhead of a local file server.

each server-based component requires networking
and security configurations that are generally more
complex than connecting together various
serverless components and managed services

However, even in cases like this, there are some
advantages to serverless that may outweigh the
moderate increase in cost:

even with relative consistency in workload for a
server-based system, any large spike in capacity
needs has a higher risk of failure

some server-based components still grow in size
despite a consistent level of usage, such as log
files, databases, or cache stores, and when hard
limits are reached, the risk of failure increases

it can be cost-prohibitive to replicate server-based
systems for non-prod environments, depending on
the components required



A FormKiQ Whitepaper - July 20, 2022

SCALABILITY IN DOCUMENT MANAGEMENT SYSTEMS: COMPARING SERVER-BASED AND SERVERLESS ARCHITECTURES

page 06 of 07

Document import

A server-based architecture may include a
mail server for receiving documents via email,
and may also include an application module
to receive documents via an API. Scaling can
be an important consideration for both of
these methods for importing.

It’s possible to mitigate those scaling
concerns through the use of a managed
email service like Amazon SES and an API
management service like Amazon API
Gateway. In addition, the object storage
service (e.g., Amazon S3) can also provide
functionality to assist in importing objects,
such as signed URLs for secure uploads, and
a command-line interface (CLI) for uploading
objects directly from a workstation or file
server.

As the workloads for both a mail server and
an API will be variable, the total cost will likely
be lower for managed services vs. configuring
and running an email and application server
for import tasks.

Optical character recognition and intelligent
document processing

A server-based architecture can include an
OCR module, which would need to be
designed to work with inconsistent
workloads.

A managed service like Amazon Textract
allows for offloading of OCR processing.
However, with a well-configured OCR module
that runs using serverless compute with an
OCR library such as Tesseract, it may be
possible to run OCR at a lower cost than by
using Amazon Textract, but results may vary
between the two OCR engines. 

It may also make sense to use other intelligent
processing services such as Amazon
Comprehend or Google Cloud’s Document AI for
specific use cases; by using serverless
components such as a queue service or step
functions, it’s possible to queue OCR or other
document processing tasks for a better
combined result.

Document search

Document management systems require the
storage of metadata for each document to assist
in classification and search. For server-based
systems, this would usually include a database
instance.

A serverless architecture could involve a managed
NoSQL database service like Amazon DynamoDB,
which can store metadata in a flexible key-value
model, which not only enables easier scaling than
a server-based database cluster, but can remove
the need for data migration on system updates.

For more robust search, such as Fulltext Search,
it’s possible to experiment with a managed
serverless relational database, like Amazon
Aurora Serverless, or to interact with a server-
based Fulltext Search system like Elasticsearch or
Amazon OpenSearch. While the fulltext search
functionality of Lucene/Elasticsearch/OpenSearch
is currently not available as a serverless
component, serverless architecture can still
leverage these server-based features with an
appropriate mechanism for having a server-
based component as a dependency.

Client interface

A server-based system may include a full-stack
monolithic application that includes the
application controller layer and the presentation
of visual information, or it may split these 



A FormKiQ Whitepaper - July 20, 2022

SCALABILITY IN DOCUMENT MANAGEMENT SYSTEMS: COMPARING SERVER-BASED AND SERVERLESS ARCHITECTURES

page 07 of 07

responsibilities between an API/middleware
and one or more front-end clients. This could
involve one or more application server
clusters, and the use of auto-scaling
configurations could prevent most cases of
failure due to an overload of requests.

A serverless system would likely include
separation between the API and the client,
though that is not guaranteed, and could
make use of a managed API service like
Amazon API Gateway for the API, while using
a managed object storage like Amazon S3
and a CDN like Amazon CloudFront to service
a static front-end client. This client could use
a JavaScript client framework like React or
Angular to interact with the API, without
requiring an application server instance.

Conclusion

While there is no reason why a server-based
architecture cannot be used for a document
management system, the importance of
scalability for a DMS, as well as the specific
use-cases of a DMS that are well-suited to
managed services and serverless
components, makes a serverless architecture
a clear competitor, and in the case of a
document management system hosted in a
cloud provider like AWS, a low-risk and high-
value choice. 

Learn more about FormKiQ's
Serverless and Headless Open Core
Document Management System at
https://www.formkiq.com


